
 

 

#wirsindbereit 

VDA Recommendation 

Interface for the communication between 
automated guided vehicles (AGV) and a 
master control 

VDA 5050 

Version 2.0.0, January 2022 
 



 

VDA 5050 Version 2.0.0, January 2022  2 

 

Copyright 2022 

 

Definition of a communication interface for driverless transport systems (DTS). This 
recommendation describes the communication interface for exchanging order and status data 
between a central master control and automated guided vehicles (AGV) for intralogistics 
processes. 

 

Disclaimer 

The VDA Recommendations are recommendations that may be freely adopted by anyone. 

Users are responsible for correct implementation of the recommendations as required on a 

case-by-case basis. 

 

The recommendations take into account the prevailing technology at the time of publication. 

Use of the VDA Recommendations does not absolve anyone from responsibility for his/her 

own actions, and all users act at their own risk. Liability of VDA and those involved in drafting 

of VDA Recommendations is excluded. 



 

VDA 5050 Version 2.0.0, January 2022  3 

 

Copyright 2022 

 

Table of contents 

1 Foreword 5 

2 Objective of the document 5 

3 Scope 7 

3.1 Other applicable documents 7 

4 Requirements and protocol definition 8 

5 Process and content of communication 9 

6 Protocol specification 11 

6.1 Symbols of the tables and meaning of formatting 11 

6.2 MQTT connection handling, security and QoS 12 

6.3 MQTT-Topic Levels 12 

6.4 Protocol Header 13 

6.5 Subtopics for communication 13 

6.6 Topic: "order"(from master control to AGV) 14 

6.7 Implementation of the order message 22 

6.8 Actions 28 

6.9 Topic: "instantActions" (from master to control to AGV) 34 

6.10 Topic: "state" (from AGV to master control) 34 

6.11 actionStates 45 

6.12 Action Blocking Types and Sequence 46 

6.13 Topic "visualization" 48 

6.14 Topic "connection" 48 

6.15 Topic "factsheet" 49 

7 Best practice 58 

7.1 Error reference 58 

7.2 Format of parameters 58 

8 Glossary 59 



 

VDA 5050 Version 2.0.0, January 2022  4 

 

Copyright 2022 

 

List of Figures 

Figure 1 Integration of DTS inventory systems ................................................................... 6 
Figure 2 Structure of the Information Flow .......................................................................... 9 
Figure 3 Graph representation in Master Control and graph transmitted in orders .......... 14 
Figure 4 Procedure for changing the driving route "Horizon" ............................................ 15 
Figure 5 Pseudocode of an order ...................................................................................... 16 
Figure 6 Pseudocode of an order update. Please look out for the change of the 

"orderUpdateId" ................................................................................................... 16 
Figure 7 Regular update process - order extension .......................................................... 17 
Figure 8 The process of accepting an order or orderUpdate ............................................ 18 
Figure 9 Expected behavior after a cancelOrder .............................................................. 19 
Figure 10 Coordinate system with sample AGV and orientation ......................................... 21 
Figure 11 Coordinate systems for map and vehicle ............................................................ 22 
Figure 12 Order Information provided by the state topic. Only the ID of the last node and 

the remaining nodes and edges are transmitted................................................. 35 
Figure 13 nodeStates, edgeStates, actionStates during order handling ............................. 36 
Figure 14 All possible status transitions for actionStates .................................................... 46 
Figure 15 Handling multiple actions .................................................................................... 47 
 

List of tables 

Table 1 The acceptable values for the actionStatus field 45 
Table 2 action blocking types 46 
 

 



 

VDA 5050 Version 2.0.0, January 2022  5 

 

Copyright 2022 

 

1 Foreword 

The interface was established in cooperation between the Verband der Automobilindustrie 
e.V. (German abbreviation VDA) and Verband Deutscher Maschinen-und Anlagenbau e.V. 
(German abbreviation VDMA). The aim of both parties is to create an universally applicable 
interface. Proposals for changes to the interface shall be submitted to the VDA, are evaluated 
jointly with the VDMA and adopted into a new version status in the event of a positive 
decision. The contribution to this document via GitHub is greatly appreciated. The Repository 
can be found at the following link: http://github.com/vda5050/vda5050. 

2 Objective of the document 

The objective of the interface is to simplify the connection of new vehicles to an existing 
master control and thus to integrate into an existing automated guided vehicles (AGV) system 
when used in the automotive industry and to enable parallel operation with AGV from different 
manufacturers and conventional systems (inventory systems) in the same working 
environment. 

Uniform interface between master control and AGV shall be defined. In detail, this should be 
achieved by the following points: 

• Description of a standard for communication between AGV and master control and 
thus a basis for the integration of transport systems into a continuous process 
automation using co-operating transport vehicles. 

• Increase in flexibility through, among other things, increased vehicle autonomy, 
process modules and interface, and preferably the separation of a rigid sequence of 
event-controlled command chains. 

• Reduction of implementation time due to high "Plug & Play" capability, as required 
information (e.g. order information) are provided by central services and are 
generally valid. Vehicles should be able to be put into operation independently of the 
manufacturer with the same implementation effort taking into account the 
requirements of occupational safety. 

• Complexity reduction and increase of the "Plug & Play" capability of the systems 
through the use of uniform, overarching coordination with the corresponding logic for 
all transport vehicles, vehicle models and manufacturers. 

• Increase in manufacturers independence using common interfaces between vehicle 
control and coordination level. 

• Integration of proprietary DTS inventory systems by implementing vertical 
communication between the proprietary master control and the superordinate master 
control (cf. Figure 1). 

http://github.com/vda5050/vda5050


 

VDA 5050 Version 2.0.0, January 2022  6 

 

Copyright 2022 

 

 

Figure 1 Integration of DTS inventory systems 

In order to implement the above-mentioned objectives, this document describes an interface 
for the communication of order and status information between AGV and master control. 

Other interfaces required for operation between AGV and master control (e.g., for exchanging 
map information, taking special skills freely into account with regard to path planning, etc.) or 
for communicating with other system components (e.g., external peripherals, fire protection 
gates, etc.) are not initially included in this document. 

https://github.com/VDA5050/VDA5050/blob/development/assets/Figure1.png


 

VDA 5050 Version 2.0.0, January 2022  7 

 

Copyright 2022 

 

3 Scope 

This recommendation contains definitions and best practice regarding communication 
between automated guided vehicles (AGVs) and master control. The goal is to allow AGV 
with different characteristics (e.g., underrun tractor or forklift AGV) to communicate with 
master control in uniform language. This creates the basis for operating any combination of 
AGV in a master control. The master control provides orders and coordinates the AGV traffic. 

The interface is based on the requirements from production and plant logistics in the 
automotive industry. According to the formulated requirements, the requirements of 
intralogistics cover the requirements of the logistics department, i.e., the logistical processes 
from goods receiving to production supply to goods out, through control free navigating 
vehicles and guided vehicles. 

In contrast to automated vehicles, autonomous vehicles solve problems that occur based on 
the corresponding sensor system and algorithms independently and can react accordingly to 
changes in a dynamic environment or be adapted to them shortly afterwards. Autonomous 
properties such as the independent bypassing of obstacles can be fulfilled by free navigating 
vehicles as well as guided vehicles. However, as soon as the path planning is carried out on 
the vehicle itself, this document describes free navigating vehicles (see glossary). 
Autonomous systems are not completely decentralized (swarm intelligence) and have defined 
behavior through predefined rules. 

For the purpose of a sustainable solution, an interface is described below which can be 
expanded in its structure. This should enable a complete coverage of the master control for 
vehicles that are guided. Vehicles that are free navigating can be integrated into the structure; 
a detailed specification required for this is not part of this recommendation. 

For the integration of proprietary stock systems, individual definitions of the interface may be 
required, which are not considered as part of this recommendation. 

3.1 Other applicable documents 

Document Description 

VDI Guideline 2510 Driverless transport systems (DTS) 

VDI Guideline 4451 Sheet 7 Compatibility of driverless transport systems (DTS) - DTS 
master control 

DIN EN ISO 3691-4 Industrial Trucks Safety Requirements and Verification-
Part 4: Driverless trucks and their systems 



 

VDA 5050 Version 2.0.0, January 2022  8 

 

Copyright 2022 

 

4 Requirements and protocol definition 

The communication interface is designed to support the following requirements: 

• Control of min. 1000 vehicles 

• Enabling the integration of vehicles with different degrees of autonomy 

• Enable decision, e.g., with regard to the selection of routes or the behavior at 
intersections 

Vehicles should transfer their status at a regular interval or when their status changes. 

Communication is done over wireless networks, taking into account the effects of connection 
failures and loss of messages. 

The message log is Message Queuing Telemetry Transport (MQTT), which is to be used in 
conjunction with a JSON structure. MQTT 3.1.1 was tested during the development of this 
protocol and is the minimum required version for compatibility. MQTT allows the distribution 
of messages to subchannels, which are called "topics". Participants in the MQTT network 
subscribe to these topics and receive information that concerns or interests them. 

The JSON structure allows for a future extension of the protocol with additional parameters. 
The parameters are described in English to ensure that the protocol is readable, 
comprehensible, and applicable outside the German-speaking area. 



 

VDA 5050 Version 2.0.0, January 2022  9 

 

Copyright 2022 

 

5 Process and content of communication 

As shown in the information flow to the operation of AGV, there are at least the following 
participants (see Figure 2): 

• the operator provides basic information 

• the master control organizes and manages the operation 

• the AGV carries out the orders 

Figure 2 describes the communication content during the operational phase. During 
implementation or modification, the AGV and master control are manually configured. 

 

Figure 2 Structure of the Information Flow 

During the implementation phase, the driverless transport systems (DTS) consisting of 
master control and AGV is set up. The necessary framework conditions are defined by the 
operator and the required information is either entered manually by him or stored in the 
master control by importing from other systems. Essentially, this concerns the following 
content: 

• Definition of routes: Using CAD import, routes can be taken over in the master 
control. Alternatively, routes can also be implemented manually in the master control 
by the operator. Routes can be one-way streets, restricted for certain vehicle groups 
(based on the size ratios), etc. 

• Route network configuration: Within the routes, stations for loading and unloading, 
battery charging stations, peripheral environments (gates, elevators, barriers), 
waiting positions, buffer stations, etc. are defined. 

• Vehicle configuration: The physical properties of an AGV (size, available load carrier 
mounts, etc.) are stored by the operator. The AGV must communicate this 
information via the subtopic factsheet in a specific way that is defined in the AGV 

Factsheet section (chapter 6.15) of this document. 

The configuration of routes and the route network described above is not part of this 
document. It forms the basis for enabling order control and driving course assignment by the 
master control based on this information and the transport requirements to be completed. 

https://github.com/VDA5050/VDA5050/blob/development/assets/Figure2.png


 

VDA 5050 Version 2.0.0, January 2022  10 

 

Copyright 2022 

 

The resulting orders for an AGV are then transferred to the vehicle via an MQTT message 
broker. This then continuously reports its status to the master control in parallel with the 
execution of the job. This is also done using the MQTT message broker. 

Functions of the master control are: 

• Assignment of orders to the AGV 

• Route calculation and guidance of the AGV (taking into account the limitations of the 
individual physical properties of each AGV, e.g., size, maneuverability, etc.) 

• Detection and resolution of blockages ("deadlocks") 

• Energy management: Charging orders can interrupt transfer orders 

• Traffic control: Buffer routes and waiting positions 

• (temporary) changes in the environment, such as freeing certain areas or changing 
the maximum speed 

• Communication with peripheral systems such as doors, gates, elevators, etc. 

• Detection and resolution of communication errors 

Functions of the AGV are: 

• Localization 

• Navigation along associated routes (guided or autonomous) 

• Continuous transmission of vehicle status 

In addition, the integrator must take into account the following when configuring the overall 
system (incomplete list): 

• Map configuration: The coordinate systems of the master control and the AGV must 
be matched. 

• Pivot point: The use of different points of the AGV or points of charge as a pivot point 
leads to different envelopes of the vehicle. The reference point may vary depending 
on the situation, e.g., it may be different for an AGV carrying a load and for an AGV 
that does not carry a load. 



 

VDA 5050 Version 2.0.0, January 2022  11 

 

Copyright 2022 

 

6 Protocol specification 

The following section describes the details of the communication protocol. The protocol 
specifies the communication between the master control and the AGV. Communication 
between the AGV and peripheral equipment, e.g., between the AGV and a gate, is excluded. 

The different messages are presented in tables describing the contents of the fields of the 
JSON that is sent as an order, state, etc. 

In addition, JSON schemas are available for validation in the public Git repository 
(https://github.com/VDA5050/vda5050). The JSON schemas are updated with every release 
of the VDA5050. 

6.1 Symbols of the tables and meaning of 

formatting 

The table contains the name of the identifier, its unit, its data type, and a description, if any. 

Identification Description 

standard Variable is an elementary data type 

bold Variable is a non-elementary data type (e.g., JSON-object or array) and 
defined separately 

italic Variable is optional 

[Square 
brackets] 

Variable (here arrayName) is an array of the data type included in the 
square brackets (here the data type is squareBrackets) 

All keywords are case sensitive. All field names are in camelCase. All enumerations are in 
UPPERCASE. 

6.1.1 Optional fields 

If a variable is marked as optional, it means that it is optional for the sender because the 
variable might not be applicable in certain cases (e.g., when the master control sends an 
order to an AGV, some AGV plan their trajectory themselves and the field trajectory within the 
edge object of the order can be omitted). 

If the AGV receives a message that contains a field which is marked as optional in this 
protocol, the AGV is expected to act accordingly and cannot ignore the field. If the AGV 
cannot process the message accordingly then the expected behavior is to communicate this 
within an error message and to reject the order. 

Master control shall only send optional information that the AGV supports. 

Example: Trajectories are optional. If an AGV cannot process trajectories, master control 
shall not send a trajectory to the vehicle. 

The AGV must communicate which optional parameters it needs via an AGV factsheet 
message. 

6.1.2 Permitted characters and field lengths 

All communication is encoded in UTF-8 to enable international adaption of descriptions. The 
recommendation is that IDs should only use the following characters: 

A-Z a-z 0-9 _ - . : 

A maximum message length is not defined. If an AGV memory is insufficient to process an 
incoming order, it is to reject the order. The matching of maximum field lengths, string lengths 
or value ranges is up to the integrator. For ease of integration, AGV vendors must supply an 
AGV factsheet that is detailed in section 6.15 Topic "factsheet". 

https://github.com/VDA5050/vda5050


 

VDA 5050 Version 2.0.0, January 2022  12 

 

Copyright 2022 

 

6.1.3 Notation of enumerations 

Enumerations must be written in uppercase. This includes keywords such as the states of the 
actions (WAITING, FINISHED, etc...) or values of the "direction" field (LEFT, RIGHT, 
443MHZ, etc...). 

6.1.4 JSON Datatypes 

Where possible, JSON data types must be used. A Boolean value is thus encoded by "true / 
false", NOT with an enumeration (TRUE, FALSE) or magic numbers. 

6.2 MQTT connection handling, security and QoS 

The MQTT protocol provides the option of setting a last will message for a client. If the client 
disconnects unexpectedly for any reason, the last will is distributed by the broker to other 
subscribed clients. The use of this feature is described in section 6.14 Topic "connection". 

If the AGV disconnects from the broker, it keeps all the order information and fulfills the order 
up to the last released node. 

Protocol-Security needs to be taken in account by broker configuration. 

To reduce the communication overhead, the MQTT QoS level 0 (Best Effort) is to be used for 
the topics order, state, factsheet and visualization. The topic connection shall 

use the QoS level 1 (At Least Once). 

6.3 MQTT-Topic Levels 

The MQTT-Topic structure is not strictly defined due to the mandatory topic structure of cloud 
providers. For a cloud-based MQTT-Broker the topic structure has to be adapted individually 
to match the topics defined in this protocol. This means that the topic names defined in the 
following sections are mandatory. 

For a local broker the MQTT topic levels are suggested as followed: 

interfaceName/majorVersion/manufacturer/serialNumber/topic 

Example: uagv/v2/KIT/0001/order 

MQTT Topic Level Data type Description 

interfaceName string Name of the used interface 

majorVersion string Major version number, preceded by "v" 

manufacturer string Manufacturer of the AGV (e.g., RobotCompany) 

serialNumber string Unique AGV Serial Number consisting of the following 
characters:  
A-Z  
a-z  
0-9  
_  
.  
:  
- 

topic string Topic (e.g. Order or System State) see Cap. 6.5 

Note: Since the / character is used to define topic hierarchies, it must not be used in any of 

the aforementioned fields. The $ character is also used in some MQTT brokers for special 

internal topics, so it should not be used either. 



 

VDA 5050 Version 2.0.0, January 2022  13 

 

Copyright 2022 

 

6.4 Protocol Header 

Each JSON starts with a header. In the following sections, the following fields will be 
referenced as header for readability. The header consists of the following individual elements. 
The header is not a JSON object. 

Object structure/ 
Identifier 

Data type Description 

headerId uint32 header ID of the message. 
The headerId is defined per topic and incremented by 1 
with each sent (but not necessarily received) message. 

timestamp string Timestamp (ISO 8601, UTC); YYYY-MM-
DDTHH:mm:ss.ssZ (e.g.“2017-04-15T11:40:03.12Z”) 

version string Version of the protocol [Major].[Minor].[Patch] (e.g. 1.3.2) 

manufacturer string Manufacturer of the AGV 

serialNumber string Serial number of the AGV 

Protocol version 

The protocol version uses semantic versioning as versioning schema. 

Examples for major version changes: 

• Breaking changes, e.g., new non-optional fields 

Examples for minor version changes: 

• New features like an additional topic for visualization 

Examples for patch version: 

• Higher available precision for a batteryCharge 

6.5 Subtopics for communication 

The AGV protocol uses the following topics for information exchange between master control 
and AGV 

Subtopic 
name 

Published 
by 

Subscribed 
by 

Used for Implementation Schema 

order master 
control 

AGV Communication of 
driving orders from 
master control to the 
AGV 

mandatory order.schema 

instantActions master 
control 

AGV Communication of 
the actions that are 
to be executed 
immediately 

mandatory instantActions.schema 

state AGV master  
control 

Communication of 
the AGV state 

mandatory state.schema 

visualization AGV visualization 
systems 

Higher frequency of 
position topic for 
visualization 
purposes only 

optional visualization.schema 

connection Broker/ 
AGV 

master 
control 

Indicates when AGV 
connection is lost, 
not to be used by 
master control for 
checking the vehicle 
health, added for an 

mandatory connection.schema 



 

VDA 5050 Version 2.0.0, January 2022  14 

 

Copyright 2022 

 

Subtopic 
name 

Published 
by 

Subscribed 
by 

Used for Implementation Schema 

MQTT protocol level 
check of connection 

factsheet AGV master 
control 

Setup of AGV in 
master control 

mandatory factsheet.schema 

6.6 Topic: "order"(from master control to AGV) 

The topic "order" is the MQTT topic via which the AGV receives a JSON encapsulated order. 

6.6.1 Concept and Logic 

The basic structure of an order is a graph of nodes and edges. The AGV is expected to 
traverse the nodes and edges to fulfill the order. The full graph of all connected nodes and 
edges is held by master control. 

The graph representation in the master control contains restrictions, e.g., which AGV is 
allowed to traverse which edge. These restrictions will not be communicated to the AGV. The 
master control only includes edges in an AGV order which the concerning AGV is allowed to 
traverse. 

It is to be avoided that the master control has a separate graph representation for each type 
of AGV. Whenever possible, one location, e.g., a waiting position in front of fire door, should 
only have one node for all types of AGV. However, due to the different sizes and 
specifications of AGV, it might be necessary to deviate from this standard in certain situations. 

 

Figure 3 Graph representation in Master Control and graph transmitted in orders 

The nodes and edges are passed as two lists in the order message. The lists order also 
governs in which sequence the nodes and edges must be traversed. 

For a valid order, at least one node must be present. The number of acceptable edges is the 
number of nodes minus one, not more or less. 

The first node of an order must be trivially reachable for the AGV. This means either that the 
AGV is already standing on the node, or that the AGV is in the nodes deviation range. 

Nodes and edges both have a boolean attribute “released”. If a node or edge is released, the 
AGV is expected to traverse it. If a node or edge is not released, the AGV must not traverse 
it. 

An edge only can be released, if both the start and end node of the edge are released. 

After an unreleased edge, no released nodes or edges can follow in the sequence. 

The set of released nodes and edges are called the “base”. The set of unreleased nodes and 
edges are called the “horizon”. 

https://github.com/VDA5050/VDA5050/blob/development/assets/Figure3.png


 

VDA 5050 Version 2.0.0, January 2022  15 

 

Copyright 2022 

 

It is valid to send an order without a horizon. 

An order message does not necessarily describe the full transport order. For traffic control 
and to accommodate resource constrained vehicles, the full transport order (which might 
consist of many nodes and edges) can be split up into many sub-orders, which are connected 
via their orderId and orderUpdateId. The process of updating an order is described in the next 
section. 

6.6.2 Orders and order update 

For traffic control the order-topic includes only the path to a decision point. Before reaching 
the decision point, the master control will send an updated path with additional path 
segments. To communicate to the AGV what it will most likely have to do after reaching the 
decision point, an order consists of two separate parts: 

• Drive to the decision point "Base": The "Base" is the defined route that the AGV 
travels. All nodes and edges of the "Base" route have already been approved by the 
control panel for the vehicle. 

• Estimated journey from the decision point "Horizon": The "Horizon" is the route that 
the AGV is likely to drive, if there is no traffic jam. The "Horizon" route has not yet 
been approved by the control panel.The AGV will initially only travel to the last 
junction of the "Base" route. 

Since MQTT is an asynchronous protocol and transmission via wireless networks is not 
reliable, it is important to note, that the "base" cannot be changed. The master control can 
therefore assume that the "base" is executed by the AGV. A later section describes a 
procedure for cancelling an order, but this is also considered unreliable due to the 
communication restrictions mentioned above. 

The master control has the possibility to change the driving commands of the "Horizon" route. 
Before the AGV arrives at the decision point via the "base" route, the master control will send 
an updated route to the AGV, which includes the other nodes. The procedure for changing the 
Horizon route is shown in Figure 4. 

 

Figure 4 Procedure for changing the driving route "Horizon" 

In Figure 4, an initial job is first sent by the control panel at time t = 1. Figure 5 shows the 
pseudocode of a possible job. For the sake of readability, a complete JSON example has 
been omitted here. 

https://github.com/VDA5050/VDA5050/blob/development/assets/Figure4.png


 

VDA 5050 Version 2.0.0, January 2022  16 

 

Copyright 2022 

 

 

Figure 5 Pseudocode of an order 

At time t = 3, the order is updated by sending an extension of the order (see example in 
Figure 6). Note that the "orderUpdateId" is incremented and that the first node of the job 
update corresponds to the last shared base node of the previous order message. 

This ensures that the AGV can also perform the job update, i.e., that the first node of the job 
update is reachable by executing the edges already known to the AGV. 

 

Figure 6 Pseudocode of an order update. Please look out for the change of the "orderUpdateId" 

This also aids in the event that an orderUpdate goes missing (because of unreliable wireless 
network). The AGV can always check that the last known base node has the same nodeId 
(and nodeSequenceId, more on that later) as the first new base node. 

Also note that node 7 is the only base node that is sent again. Since the base cannot be 
changed, a retransmission of nodes 6 and 4 is not valid. 

It is important, that the contents of the stitching node (node 7 in the example case) are not 
changed. For actions, deviation range, etc. the AGV must use the instructions provided in the 
first order (Figure 5, orderUpdateId 0). 

{ 

 orderId: "1234" 

 orderUpdateId:0, 

 nodes: [ 

    6 {released: True}, 

    4 {released: True}, 

    7 {released: True}, 

    2 {released: False}, 

    8 {released: False} 

 ], 

 edges: [ 

  e1 {released: True}, 

  e3 {released: True}, 

  e8 {released: False}, 

  e9 {released: False} 

 ] 

} 

{ 

 orderId: 1234, 

 orderUpdateId: 1, 

 nodes: [ 

  7 {released: True}, 

  2 {released: True}, 

  8 {released: True}, 

  9 {released: False} 

 ], 

 edges: [ 

  e8 {released: True}, 

  e9 {released: True}, 

  e10 {released: False} 

 ] 

} 



 

VDA 5050 Version 2.0.0, January 2022  17 

 

Copyright 2022 

 

 

Figure 7 Regular update process - order extension 

Figure 7 describes how an order should be extended. It shows the information, that is 
currently available on the AGV. The orderId stays the same and the orderUpdateId is 
incremented. 

The last node of the previous base is the first base node in the updated order. With this node 
the AGV can add the updated order onto the current order (stitching). The other nodes and 
edges from the previous base are not resent. 

Master control has the option to make changes to the horizon by sending entirely different 
nodes as the new base. The horizon can also be deleted. 

To allow loops in orders (like going from node 1 to 2 and then back to 1) a sequenceId is 
assigned to the node and edge objects. This sequenceId runs over the nodes and edges (first 
node of an order receives a 0, the first edge then gets the 1, the second node then gets the 2, 
and so on). This allows for easier tracking of the order progress. 

Once a sequenceId is assigned, it does not change with order updates (see Figure 7). This is 
necessary to determine on AGV side to which node the master control refers to. 

Figure 8 describes the process of accepting an order or orderUpdate. 

https://github.com/VDA5050/VDA5050/blob/development/assets/Figure7.png


 

VDA 5050 Version 2.0.0, January 2022  18 

 

Copyright 2022 

 

 

Figure 8 The process of accepting an order or orderUpdate 

6.6.3 Order Cancellation (by Master Control) 

In the event of an unplanned change in the base nodes, the order must be canceled by using 
the instantAction cancelOrder. 

After receiving the instantAction cancelOrder, the vehicle stops (based on its capabilities, 
e.g., right where it is or on the next node). 

If there are actions scheduled, these actions must be cancelled and should report “failed” in 
their actionState. If there are running actions, those actions should be cancelled and also be 
reported as failed.  

If the action cannot be interrupted, the actionState of that action should reflect that by 
reporting “running” while it is running, and after that the respective state (“finished”, if 

https://github.com/VDA5050/VDA5050/blob/development/assets/Figure8.png


 

VDA 5050 Version 2.0.0, January 2022  19 

 

Copyright 2022 

 

successful and “failed”, if not). While actions are running, the cancelOrder action must report 
“running”, until all actions are cancelled/finished. After all vehicle movements and all actions 
are stopped, the cancelOrder action status must report “finished”. 

The orderId and orderUpdateId is kept. 

Figure 9 shows the expected behavior for different AGV capabilities. 

 

Figure 9 Expected behavior after a cancelOrder 

6.6.3.1  Receiving a new order after cancellation 

After the cancellation of an order, the vehicle must be in a state to receive a new order. 

In the case of an AGV that localizes itself on nodes via a tag, the new order has to begin on 
the node the AGV is now standing on (see also Figure 8). 

https://github.com/VDA5050/VDA5050/blob/development/assets/Figure9.png


 

VDA 5050 Version 2.0.0, January 2022  20 

 

Copyright 2022 

 

In case of an AGV that can stop in-between nodes, the choice is up to master control how the 
next order should be started. The AGV must accept both methods. 

There are two options: 

• Send an order, where the first node is a temporary node that is positioned where the 
AGV currently stands. The AGV must then realize that this node is trivially reachable 
and accept the order. 

• Send an order, where the first node is the last traversed node of the previous order 
but set the deviation range so large that the AGV is within this range. Thus, the AGV 
must realize that this node must be counted as traversed and accept the order. 

6.6.3.2 Receiving a cancelOrder action when AGV has no order 

If the AGV receives a cancelOrder action but the AGV currently has no order, or the previous 
order was cancelled, the cancelOrder action must report as failed. 

The AGV must report a “noOrderToCancel” error with the errorLevel set to warning. The 
actionId of the instantAction must be passed as an errorReference. 

6.6.4 Order rejection 

There are several scenarios, when an order must be rejected.  
These are explained in Figure 8. 

6.6.4.1 Vehicle gets a malformed new order 

Resolution: 

1. Vehicle does NOT take over the new order in its internal buffer. 
2. The vehicle reports the warning "validationError" 
3. The warning must be reported until the vehicle has accepted a new order. 

6.6.4.2 Vehicle receives an order with actions it cannot perform 

(e.g. lifting height higher than maximum lifting height, or 

lifting actions although no stroke is installed), or with 

fields that it cannot use (e.g. Trajectory) 

Resolution: 

1. Vehicle does NOT take over the new order in its internal buffer. 
2. Vehicle reports the warning "orderError" with the wrong fields as error references. 
3. The warning must be reported until the vehicle has accepted a new order. 

6.6.4.3 Vehicle gets a new order with the same orderId, but a 

lower orderUpdateId than the current orderUpdateId 

Resolution: 

1. Vehicle does NOT take over the new order in its internal buffer. 
2. Vehicle keeps the PREVIOUS order it its buffer. 
3. The vehicle reports the warning "orderUpdateError" 
4. The vehicle continues with the executing the previous order. 

If the AGV receives an order with the same orderId and orderUpdateId twice, the second 
order will be ignored. This might happen, if the master control sends the order again, 
because the status message came too late, and the master control could not verify that the 
first order was received. 



 

VDA 5050 Version 2.0.0, January 2022  21 

 

Copyright 2022 

 

6.6.5 Maps 

To ensure consistent navigation among different types of AGV, the position is always 
specified in reference to the local map coordinate system (see Figure 10). For the 
differentiation between different levels a unique mapId is used. The map coordinate system is 
to be specified as a right-handed coordinate system with the z-axis pointing skywards. A 
positive rotation therefore is to be understood as a counterclockwise rotation. The vehicle 
coordinate system is also specified as a right-handed coordinate system with the x-axis 
pointing in the forward direction of the vehicle and the z-axis pointing skywards. This is in 
accordance with chapter 2.11 in DIN ISO 8855. 

 

Figure 10 Coordinate system with sample AGV and orientation 

The X, Y and Z coordinates must be in meters. The orientation must be in radians and must 
be within +Pi and -Pi. 

https://github.com/VDA5050/VDA5050/blob/development/assets/Figure10.png


 

VDA 5050 Version 2.0.0, January 2022  22 

 

Copyright 2022 

 

 

Figure 11 Coordinate systems for map and vehicle 

6.7 Implementation of the order message 

Object structure Unit Data type Description 

headerId 
 

uint32 Header ID of the message. 
The headerId is defined per topic and 
incremented by 1 with each sent (but not 
necessarily received) message. 

timestamp 
 

string Timestamp (ISO 8601, UTC); YYYY-MM-
DDTHH:mm:ss.ssZ (e.g.“2017-04-
15T11:40:03.12Z”) 

version 
 

string Version of the protocol 
[Major].[Minor].[Patch] (e.g. 1.3.2) 

manufacturer 
 

string Manufacturer of the AGV 

serialNumber 
 

string Serial number of the AGV 

orderId 
 

string Order identification. 
This is to be used to identify multiple order 
messages that belong to the same order. 

orderUpdateId 
 

uint32 Order update identification. 
Is unique per orderId. 
If an order update is rejected, this field is to 
be passed in the rejection message 

zoneSetId 
 

string Unique identifier of the zone set, that the 
AGV has to use for navigation or that was 
used by master control for planning.  
 
Optional: Some master control systems do 
not use zones. 
Some AGV do not understand zones. 
Do not add to message, if no zones are 
used. 

nodes [node] 
 

array Array of nodes objects to be traversed for 
fulfilling the order.  
One node is enough for a valid order.  
Leave edge list empty for that case. 

https://github.com/VDA5050/VDA5050/blob/development/assets/Figure11.png


 

VDA 5050 Version 2.0.0, January 2022  23 

 

Copyright 2022 

 

Object structure Unit Data type Description 

edges [edge] 
 

array Array of edge objects to be traversed for 
fulfilling the order.  
One node is enough for a valid order.  
Leave edge list empty for that case. 

node { 
 

JSON-object 
 

nodeId 
 

string Unique node identification 

sequenceId 
 

uint32 Number to track the sequence of nodes 
and edges in an order and to simplify order 
updates.  
The purpose is to distinguish between a 
node, which is passed more than once 
within one orderId.  
The variable sequenceId runs across all 
nodes and edges of the same order and is 
reset when a new orderId is issued. 

nodeDescription 
 

string Additional information on the node 

released 
 

boolean "true" indicates that the node is part of the 
base.  
"false" indicates that the node is part of the 
horizon. 

nodePosition 
 

JSON-object Node position.  
Optional for vehicle-types that do not 
require the node position (e.g., line-guided 
vehicles). 

actions [action]  
} 

 
array Array of actions to be executed on a node.  

Empty array, if no actions required. 

nodePosition { 
 

JSON-object Defines the position on a map in a global 
project specific world coordinate system.  
Each floor has its own map.  
All maps must use the same project 
specific global origin. 

x m float64 X-position on the map in reference to the 
map coordinate system.  
Precision is up to the specific 
implementation. 

y m float64 Y-position on the map in reference to the 
map coordinate system.  
Precision is up to the specific 
implementation. 



 

VDA 5050 Version 2.0.0, January 2022  24 

 

Copyright 2022 

 

Object structure Unit Data type Description 

theta rad float64 Range: [-Pi ... Pi]  
 
Absolute orientation of the AGV on the 
node. 
Optional: vehicle can plan the path by 
itself. 
If defined, the AGV has to assume the 
theta angle on this node. 
If previous edge disallows rotation, the 
AGV must rotate on the node. 
If following edge has a differing orientation 
defined but disallows rotation, the AGV is 
to rotate on the node to the edges desired 
rotation before entering the edge. 

allowedDeviationXY 
 

float64 Indicates how exact an AGV has to drive 
over a node in order for it to count as 
traversed.  
 
If = 0: no deviation is allowed (no deviation 
means within the normal tolerance of the 
AGV manufacturer).  
 
If > 0: allowed deviation-radius in meters.  
If the AGV passes a node within the 
deviation-radius, the node is considered to 
have been traversed. 

allowedDeviationTheta 
 

float64 Range: [0 ... Pi]  
 
Indicates how big the deviation of theta 
angle can be.  
The lowest acceptable angle is theta - 
allowedDeviationTheta and the highest 
acceptable angle is theta + 
allowedDeviationTheta. 

mapId 
 

string Unique identification of the map in which 
the position is referenced.  
Each map has the same project specific 
global origin of coordinates.  
When an AGV uses an elevator, e.g., 
leading from a departure floor to a target 
floor, it will disappear off the map of the 
departure floor and spawn in the related lift 
node on the map of the target floor. 

mapDescription  
} 

 
string Additional information on the map. 

action { 
 

JSON-object Describes an action that the AGV can 
perform. 

actionType 
 

string Name of action as described in the first 
column of “Actions and Parameters”.  
Identifies the function of the action. 

actionId 
 

string Unique ID to identify the action and map 
them to the actionState in the state.  
Suggestion: Use UUIDs. 

actionDescription 
 

string Additional information on the action 



 

VDA 5050 Version 2.0.0, January 2022  25 

 

Copyright 2022 

 

Object structure Unit Data type Description 

blockingType 
 

string Enum {NOTE, SOFT, HARD}:  
"NONE"- allows driving and other actions; 
"SOFT"- allows other actions, but not 
driving; 
"HARD"- is the only allowed action at that 
time. 

actionParameters 
[actionParameter]  
 
} 

 
array Array of actionParameter-objects for the 

indicated action, e.g., deviceId, loadId, 
external Triggers.  
 
See "Actions and Parameters" 

edge { 
 

JSON-object Directional connection between two nodes. 

edgeId 
 

string Unique edge identification. 

sequenceId 
 

Integer Number to track the sequence of nodes 
and edges in an order and to simplify order 
updates.  
The variable sequenceId runs across all 
nodes and edges of the same order and is 
reset when a new orderId is issued. 

edgeDescription 
 

string Additional information on the edge. 

released 
 

boolean "true" indicates that the edge is part of the 
base. 
"false" indicates that the edge is part of the 
horizon. 

startNodeId 
 

string nodeId of startNode. 

endNodeId 
 

string nodeId of endNode. 

maxSpeed m/s float64 Permitted maximum speed on the edge.  
Speed is defined by the fastest 
measurement of the vehicle. 

maxHeight m float64 Permitted maximum height of the vehicle, 
including the load, on edge. 

minHeight m float64 Permitted minimal height of the load 
handling device on the edge. 



 

VDA 5050 Version 2.0.0, January 2022  26 

 

Copyright 2022 

 

Object structure Unit Data type Description 

orientation rad float64 Orientation of the AGV on the edge. The 
value orientationType defines if it has to be 
interpreted relative to the global project 
specific map coordinate system or 
tangential to the edge. In case of 
interpreted tangential to the edge 0.0 = 
forwards and PI = backwards.  
Example: orientation Pi/2 rad will lead to a 
rotation of 90 degrees. 
 
If AGV starts in different orientation, rotate 
the vehicle on the edge to the desired 
orientation if rotationAllowed is set to 
“true”. 
If rotationAllowed is “false", rotate before 
entering the edge. 
If that is not possible, reject the order. 
 
If no trajectory is defined, apply the 
rotation to the direct path between the two 
connecting nodes of the edge. 
If a trajectory is defined for the edge, apply 
the orientation to the trajectory. 

orientationType 
 

string Enum {GLOBAL, TANGENTIAL}:  

"GLOBAL"- relative to the global project 
specific map coordinate system; 
"TANGENTIAL"- tangential to the edge. 
 
If not defined, the default value is 
"TANGENTIAL". 

direction 
 

string Sets direction at junctions for line-guided 
or wire-guided vehicles, to be defined 
initially (vehicle-individual). 
Examples: left, right, straight, 433MHz. 

rotationAllowed 
 

boolean “true”: rotation is allowed on the edge. 
“false”: rotation is not allowed on the edge. 
 
Optional: 
No limit, if not set. 

maxRotationSpeed rad/s float64 Maximum rotation speed 
 
Optional: 
No limit, if not set. 

trajectory 
 

JSON-object Trajectory JSON-object for this edge as a 
NURBS.  
Defines the curve, on which the AGV 
should move between startNode and 
endNode. 
 
Optional: 
Can be omitted, if AGV cannot process 
trajectories or if AGV plans its own 
trajectory. 



 

VDA 5050 Version 2.0.0, January 2022  27 

 

Copyright 2022 

 

Object structure Unit Data type Description 

length m float64 Length of the path from startNode to 
endNode 
 
Optional: 
This value is used by line-guided AGVs to 
decrease their speed before reaching a 
stop position. 

actions [action] 
 
 
} 

 
array Array of actionIds to be executed on the 

edge.  
Empty array, if no actions required.  
An action triggered by an edge will only be 
active for the time that the AGV is 
traversing the edge which triggered the 
action.  
When the AGV leaves the edge, the action 
will stop and the state before entering the 
edge will be restored. 

trajectory { 
 

JSON-object 
 

degree 
 

float64 Range: [1 ... infinity] 
 
Defines the number of control points that 
influence any given point on the curve. 
Increasing the degree increases continuity. 
 
If not defined, the default value is 1. 

knotVector [float64] 
 

array Range: [ 0.0 ... 1.0] 
 
Sequence of parameter values that 
determines where and how the control 
points affect the NURBS curve. 
 
knotVector has size of number of control 
points + degree + 1. 

controlPoints 
[controlPoint] 
 
} 

 
array List of JSON controlPoint objects defining 

the control points of the NURBS, which 
includes the beginning and end point. 

controlPoint { 
 

JSON-object 
 

x 
 

float64 X coordinate described in the world 
coordinate system. 

y 
 

float64 Y coordinate described in the world 
coordinate system. 

weight 
 

float64 Range: (0 ... infinity) 
 
The weight, with which this control point 
pulls on the curve. 
When not defined, the default will be 1.0. 

} 
   



 

VDA 5050 Version 2.0.0, January 2022  28 

 

Copyright 2022 

 

6.8 Actions 

If the AGV supports actions other than driving, these actions are executed via the action field 
that is attached to either a node or an edge, or sent via the separate topic instantActions (see 
6.9). 

Actions that are to be executed on an edge must only run while the AGV is on the edge (see 
6.10.2). 

Actions that are triggered on nodes can run as long as they need to run. Actions on nodes 
should be self-terminating (e.g., an audio signal that lasts for five seconds or a pick action, 
that is finished after picking up a load) or should be formulated pairwise (e.g., 
activateWarningLights and deactivateWarningLights), although there may be exceptions. 

The following section presents predefined actions that must be used by the AGV, if the AGVs 
capabilities map to the action description. If there is a sensible way to use the defined 
parameters, they must be used. Additional parameters can be defined, if they are needed to 
execute an action successfully. 

If there is no way to map some action to one of the actions of the following section, the AGV 
manufacturer can define additional actions that must be used by master control. 



 

VDA 5050 Version 2.0.0, January 2022  29 

 

Copyright 2022 

 

6.8.1 Predefined action definition, their parameters, effects, and scope 

general  scope 

action counter action Description importent Parameter linked state instant node edge 

startPause stopPause Activates the pause mode.  
A linked state is required, because many 
AGVs can be paused by using a hardware 
switch.  
No more AGV driving movements - reaching 
next node is not necessary. 
Actions can continue.  
Order is resumable. 

yes - paused yes no no 

stopPause startPause Deactivates the pause mode.  
Movement and all other actions will be 
resumed (if any). 
A linked state is required because many 
AGVs can be paused by using a hardware 
switch.  
stopPause can also restart vehicles that 
were stopped with a hardware button that 
triggered startPause (if configured). 

yes - paused yes no no 

startCharging stopCharging Activates the charging process.  
Charging can be done on a charging spot 
(vehicle standing) or on a charging lane 
(while driving).  
Protection against overcharging is 
responsibility of the vehicle. 

yes - .batteryState.chargi
ng 

yes yes no 

stopCharging startCharging Deactivates the charging process to send a 
new order.  
The charging process can also be 
interrupted by the vehicle / charging station, 
e.g., if the battery is full.  
Battery state is only allowed to be “false”, 
when AGV is ready to receive orders. 

yes - .batteryState.chargi
ng 

yes yes no 

initPosition - Resets (overrides) the pose of the AGV with 
the given paramaters. 

yes x (float64) 
y (float64) 
theta (float64) 
mapId (string) 
lastNodeId (string) 

.agvPosition.x 

.agvPosition.y 

.agvPosition.theta 

.agvPosition.mapId 

.lastNodeId 

yes yes 
(Elevator) 

no 

stateRequest - Requests the AGV to send a new state 
report. 

yes - - yes no no 



 

VDA 5050 Version 2.0.0, January 2022  30 

 

Copyright 2022 

 

general  scope 

action counter action Description importent Parameter linked state instant node edge 

logReport - Requests the AGV to generate and store a 
log report. 

yes reason 
(string) 

- yes no no 

pick drop 
 
(if automated) 

Request the AGV to pick a load.  
AGVs with multiple load handling devices 
can process multiple pick operations in 
parallel.  
In this case, the paramater lhd needs to be 
present (e.g. LHD1).  
The paramater stationType informs how the 
pick operation is handled in detail (e.g., floor 
location, rack location, passive conveyor, 
active conveyor, etc.).  
The load type informs about the load unit 
and can be used to switch field for example 
(e.g., EPAL, INDU, etc).  
For preparing the load handling device (e.g., 
pre-lift operations based on the height 
parameter), the action could be announced 
in the horizon in advance.  
But, pre-Lift operations, etc., are not 
reported as running in the AGV state, 
because the associated node is not released 
yet. 
If on an edge, the vehicle can use its 
sensing device to detect the position for 
picking the node. 

no lhd (string, optional) 
stationType (string) 
stationName(string, 
optional) 
loadType (string)  
loadId(string, optional) 
height (float64) (optional) 
defines bottom of the load 
related to the floor 
depth (float64) (optional) 
for forklifts 
side(string) (optional) e.g. 
conveyor 

.load no yes yes 

drop pick 
 
(if automated) 

Request the AGV to drop a load.  
See action pick for more details. 

no lhd (string, optional) 
stationType (string, 
optional) 
stationName (string, 
optional) 
loadType (string, optional) 
loadId(string, optional) 
height (float64, optional) 
depth (float64, optional)  
… 

.load no yes yes 

detectObject - AGV detects object (e.g. load, charging 
spot, free parking position). 

yes objectType(string, optional) - no yes yes 

finePositioning - On a node, AGV will position exactly on a 
target. 
The AGV is allowed to deviate from its node 
position. 

yes stationType(string, 
optional) 
stationName(string, 
optional) 

- no yes yes 



 

VDA 5050 Version 2.0.0, January 2022  31 

 

Copyright 2022 

 

 

6.8.2 Predefined action definitions, description of their states 

action initializing running paused finished failed 

startPause - Activation of the mode is in 
preperation.  
If the AGV supports an 
instant transition, this state 
can be omitted. 

- Vehicle stands still.  
All actions will be paused.  
The pause mode is 
activated.  
The AGV reports .paused: 
true. 

The pause mode can 
not be activated for 
some reason (e.g., 
overridden by hardware 
switch). 

stopPause - Deactivation of the mode is 
in preparation.  
If the AGV supports an 
instant transition, this state 
can be omitted. 

- The pause mode is 
deactivated.  
All paused actions will be 
resumed.  
The AGV reports .paused: 
false. 

The pause mode can 
not be deactivated for 
some reason (e.g., 
overwritten by 
hardware switch). 

startCharging - Activation of the charging 
process is in progress 

- The charging process is 
started.  

The charging process 
could not be started for 

general  scope 

action counter action Description importent Parameter linked state instant node edge 

On an edge, AGV will e.g. align on 
stationary equipment while traversing an 
edge. 
InstantAction: AGV starts positioning exactly 
on a target. 

waitForTrigger - AGV has to wait for a trigger on the AGV 
(e.g. button press, manual loading).  
Master control is responsible to handle the 
timeout and has to cancel the order if 
necessary. 

yes triggerType(string) - no yes no 

cancelOrder - AGV stops as soon as possible.  
This could be immediately or on the next 
node.  
Then the order is deleted. All actions are 
canceled. 

yes - - yes no no 

factsheetRequest - Requests the AGV to send a factsheet yes - - yes no no 



 

VDA 5050 Version 2.0.0, January 2022  32 

 

Copyright 2022 

 

action initializing running paused finished failed 

(communication with 
charger is running).  
If the AGV supports an 
instant transition, this state 
can be omitted. 

The AGV reports 
.batteryState.charging: true. 

some reason (e.g., not 
aligned to charger). 
Charging problems 
should correspond with 
an error. 

stopCharging - Deactivation of the 
charging process is in 
progress (communication 
with charger is running).  
If the AGV supports an 
instant transition, this state 
can be omitted. 

- The charging process is 
stopped.  
The AGV reports 
.batteryState.charging: false 

The charging process 
could not be stopped 
for some reason (e.g., 
not aligned to charger). 
Charging problems 
should correspond with 
an error. 

initPosition - Initializing of the new pose 
in progress (confidence 
checks etc.).  
If the AGV supports an 
instant transition, this state 
can be omitted. 

- The pose is reset.  
The AGV reports  
.agvPosition.x = x,  
.agvPosition.y = y,  
.agvPosition.theta = theta  
.agvPosition.mapId = mapId  
.agvPosition.lastNodeId = 
lastNodeId 

The pose is not valid or 
can not be reset.  
General localization 
problems should 
correspond with an 
error. 

stateRequest - - - The state has been 
communicated 

- 

logReport - The report is in generating.  
If the AGV supports an 
instant generation, this 
state can be omitted. 

- The report is stored.  
The name of the log will be 
reported in status. 

The report can not be 
stored (e.g., no space). 

pick Initializing of the 
pick process, e.g., 
outstanding lift 
operations. 

The pick process is running 
(AGV is moving into station, 
load handling device is 
busy, communication with 
station is running, etc.). 

The pick process is 
being paused, e.g., if a 
safety field is violated.  
After removing the 
violation, the pick 
process continues. 

Pick is done.  
Load has entered the AGV 
and AGV reports new load 
state. 

Pick failed, e.g., station 
is unexpected empty.  
Failed pick operations 
should correspond with 
an error. 



 

VDA 5050 Version 2.0.0, January 2022  33 

 

Copyright 2022 

 

action initializing running paused finished failed 

drop Initializing of the 
drop process, e.g., 
outstanding lift 
operations. 

The drop process is 
running (AGV is moving 
into station, load handling 
device is busy, 
communication with station 
is running, etc.). 

The drop process is 
being paused, e.g., if a 
safety field is violated.  
After removing the 
violation the drop 
process continues. 

Drop is done.  
Load has left the AGV and 
AGV reports new load state. 

Drop failed, e.g., station 
is unexpected 
occupied.  
Failed drop operations 
should correspond with 
an error. 

detectObject - Object detection is running. - Object has been detected. AGV could not detect 
the object. 

finePositioning - AGV positions itself exactly 
on a target. 

The fine positioning 
process is being 
paused, e.g., if a safety 
field is violated.  
After removing the 
violation, the fine 
positioning continues. 

Goal position in reference to 
the station is reached. 

Goal position in 
reference to the station 
could not be reached. 

waitForTrigger - AGV is waiting for the 
Trigger 

- Trigger has been triggered. waitForTrigger fails if 
order has been 
canceled. 

cancelOrder - AGV is stopping or driving, 
until it reaches the next 
node. 

- AGV stands still and has 
canceled the order. 

- 

factsheetRequest - - - The factsheet has been 
communicated 

- 

 

 



 

VDA 5050 Version 2.0.0, January 2022  34 

 

Copyright 2022 

 

6.9 Topic: "instantActions" (from master to control 

to AGV) 

In certain cases, it is necessary to send actions to the AGV, that need to be performed 
immediately. This is made possible by publishing an instantAction message to the topic 
instantActions. instantActions must not conflict with the content of the AGV’s current order 
(e.g., instantAction to lower fork, while order says to raise fork). 

Some examples for which instant actions could be relevant are: 

• pause the AGV without changing anything in the current order; 

• resume order after pause ; 

• activate signal (optical, audio, etc.). 

For additional information, see chapter 7 Best practices. 

Object structure Data type Description 

headerId uint32 header ID of the message. 
The headerId is defined per topic and incremented by 1 with 
each sent (but not necessarily received) message. 

timestamp string Timestamp (ISO 8601, UTC); YYYY-MM-
DDTHH:mm:ss.ssZ (e.g., “2017-04-15T11:40:03.12Z”) 

version string Version of the protocol [Major].[Minor].[Patch] (e.g., 1.3.2). 

manufacturer string Manufacturer of the AGV. 

serialNumber string Serial number of the AGV. 

actions [action] array Array of actions that need to be performed immediately and 
are not part of the regular order (see chapter 6.7). 

When an AGV receives an instantAction, an appropriate actionStatus is added to the 
actionStates array of the AGV state. The actionStatus is updated according to the progress of 
the action. See also Figure 12 for the different transitions of an actionStatus. 

6.10 Topic: "state" (from AGV to master control) 

The AGV-State will be transmitted on only one topic. Compared to separate messages (e.g., 
for orders, battery-state and errors) using one topic will reduce the workload of the broker and 
the master control for handling messages, while also keeping the information about the AGV 
state synchronized. 

AGV-State message will be published with occurrence of relevant events or at the latest 
every 30s via MQTT-broker to master control. 

Events that trigger the transmission of the state message are: 

• Receiving an order 

• Receiving an order update 

• Changes in the load status 

• Errors or warnings 

• Driving over a node 

• Switching the operating mode 

• Change in the "driving" field 

• Change in the nodeStates, edgeStates or actionStates 

There should be an effort to curb the amount of communication. If two events correlate with 
each other (e.g., the receiving of a new order usually forces an update of the node- and 
edgeStates; as does the driving over a node), it is sensible to trigger one state update instead 
of multiple. 



 

VDA 5050 Version 2.0.0, January 2022  35 

 

Copyright 2022 

 

6.10.1 Concept and Logic 

The order progress is tracked by the nodeStates and edgeStates. Additionally, if the AGV 

is able to derive its current position, it can publish its position via the “position” field. 

If the AVG plans the path by itself, it must communicate its calculated trajectory (including 
base and horizon) in the form of a NURBS via the trajectory object in the state message, 

unless master control cannot use this field and it was agreed during integration, that this field 
must not be sent. After nodes are released by master control, the AGV is not allowed to 
change its trajectory. 

The nodeStates and edgeStates includes all nodes/edges, that the AGV still must 

traverse. 

 

Figure 12 Order Information provided by the state topic. 
Only the ID of the last node and the remaining nodes and edges are transmitted 

6.10.2 Traversal of nodes and entering/leaving edges, triggering of 

actions 

The AGV decides on its own, when a node should count as traversed. Generally, the AGV’s 
control point should be within the node’s deviationRangeXY and its orientation within 

deviationRangeTheta. 

The AGV reports the traversal of a node by removing its nodeState from the nodeStates 

array and setting the lastNodeId, lastNodeSequenceNumber to the traversed node’s 

values. 

As soon as the AGV reports the node as traversed, the AGV must trigger the actions 
associated with the node, if any. 

The traversal of a node also marks the leaving of the edge leading up to the node. The edge 
must then be removed from the edgeStates and the actions that were active on the edge 

must be finished. 

The traversal of the node also marks the moment, when the AGV enters the following edge, if 
there is one. The edges actions must now be triggered. An exception to this rule is, if the AGV 
has to pause on the edge (because of a soft or hard blocking edge, or otherwise) – then the 
AGV enters the edge after it begins moving again. 

https://github.com/VDA5050/VDA5050/blob/development/assets/Figure12.png


 

VDA 5050 Version 2.0.0, January 2022  36 

 

Copyright 2022 

 

 

Figure 13 nodeStates, edgeStates, actionStates during order handling 

6.10.3 Base request 

If the AGV detects, that its base is running low, it can set the newBaseRequest flag to true 

to prevent unnecessary braking. 

6.10.4 Information 

The AGV can submit arbitrary additional information to master control via the information 

array. It is up to the AGV how long it reports information via an information message. 

Master control must not use the info messages for logic, it must only be used for visualization 
and debugging purposes. 

6.10.5 Errors 

The AGV reports errors via the errors array. Errors have two levels: WARNING and FATAL. 

A WARNING is a self-resolving error, e.g., a field violation. A FATAL error needs human 

intervention. Errors can pass references that help with finding the cause of the error via the 
errorReferences array. 

https://github.com/VDA5050/VDA5050/blob/development/assets/Figure13.png


 

VDA 5050 Version 2.0.0, January 2022  37 

 

Copyright 2022 

 

6.10.6 Implementation 

Object structure Unit Data type Description 

headerId 
 

uint32 Header ID of the message. 
The headerId is defined per topic and 
incremented by 1 with each sent (but 
not necessarily received) message. 

timestamp 
 

string Timestamp (ISO 8601, UTC); YYYY-
MM-DDTHH:mm:ss.ssZ (e.g.“2017-
04-15T11:40:03.12Z”). 

version 
 

string Version of the protocol 
[Major].[Minor].[Patch] (e.g. 1.3.2). 

manufacturer 
 

string Manufacturer of the AGV. 

serialNumber 
 

string Serial number of the AGV. 

orderId 
 

string Unique order identification of the 
current order or the previous finished 
order.  
The orderId is kept until a new order 
is received.  
Empty string (""), if no previous 
orderId is available. 

orderUpdateId 
 

uint32 Order Update Identification to 
identify, that an order update has 
been accepted by the AGV.  
“0” if no previous orderUpdateId is 
available. 

zoneSetId 
 

string Unique ID of the zone set, that the 
AGV currently uses for path planning.  
Must be the same as the one used in 
the order, otherwise the AGV has to 
reject the order. 
 
Optional: If the AGV does not use 
zones, this field can be omitted. 

lastNodeId 
 

string Node ID of last reached node or, if 
AGV is currently on a node, current 
node (e.g., „node7”). Empty string 
(""), if no lastNodeId is available. 

lastNodeSequenceId 
 

uint32 Sequence ID of the last reached 
node or, if AGV is currently on a 
node, Sequence ID of current node.  
"0" if no lastNodeSequenceId is 
available. 

nodeStates [nodeState] 
 

array Array of nodeState-Objects, that 
need to be traversed for fulfilling the 
order 
(empty list if idle) 

edgeStates [edgeState] 
 

array Array of edgeState-Objects, that 
need to be traversed for fulfilling the 
order 
(empty list if idle) 



 

VDA 5050 Version 2.0.0, January 2022  38 

 

Copyright 2022 

 

Object structure Unit Data type Description 

agvPosition 
 

JSON-object Current position of the AGV on the 
map. 
 
Optional: 
 
Can only be omitted for AGV without 
the capability to localize themselves, 
e.g., line guided AGVs. 

velocity 
 

JSON-object The AGV velocity in vehicle 
coordinates. 

loads [load] 
 

array Loads, that are currently handled by 
the AGV. 
 
Optional: If AGV cannot determine 
load state, leave the array out of the 
state.  
If the AGV can determine the load 
state, but the array is empty, the AGV 
is considered unloaded. 

driving 
 

boolean “true”: indicates, that the AGV is 
driving and/or rotating. Other 
movements of the AGV (e.g., lift 
movements) are not included here. 
 
“false”: indicates that the AGV is 
neither driving nor rotating. 

paused 
 

boolean “true”: AGV is currently in a paused 
state, either because of the push of a 
physical button on the AGV or 
because of an instantAction.  
The AGV can resume the order. 
 
“false”: The AGV is currently not in a 
paused state. 

newBaseRequest 
 

boolean “true”: AGV is almost at the end of 
the base and will reduce speed, if no 
new base is transmitted.  
Trigger for master control to send a 
new base. 
 
“false”: no base update required. 

distanceSinceLastNode meter float64 Used by line guided vehicles to 
indicate the distance it has been 
driving past the „lastNodeId“.  
Distance is in meters. 



 

VDA 5050 Version 2.0.0, January 2022  39 

 

Copyright 2022 

 

Object structure Unit Data type Description 

actionStates [actionState] 
 

array Contains a list of the current actions 
and the actions, which are yet to be 
finished.  
This may include actions from 
previous nodes, that are still in 
progress. 
 
When an action is completed, an 
updated state message is published 
with actionStatus set to finished and 
if applicable with the corresponding 
resultDescription.  
 
The action state is kept until a new 
order is received. 

batteryState 
 

JSON-object Contains all battery-related 
information. 

operatingMode 
 

string Enum {AUTOMATIC, 
SEMIAUTOMATIC, MANUAL, 
SERVICE, TEACHIN} 
For additional information, see the 
table OperatingModes in the chapter 
6.10.6. 

errors [error] 
 

array Array of error-objects.  
All active errors of the AGV should be 
in the list. 
An empty array indicates that the 
AGV has no active errors. 

information [info] 
 

array Array of info-objects.  
An empty array indicates, that the 
AGV has no information.  
This should only be used for 
visualization or debugging – it must 
not be used for logic in master 
control. 

safetyState 
 

JSON-object Contains all safety-related 
information. 

nodeState { 
 

JSON-object 
 

nodeId 
 

string Unique node identification. 

sequenceId 
 

uint32 sequenceId to discern multiple nodes 
with same nodeId. 

nodeDescription 
 

string Additional information on the node. 

nodePosition 
 

JSON-object Node position.  
The object is defined in chapter 6.6  
Optional:  
Master control has this information.  
Can be sent additionally, e. g. for 
debugging purposes. 



 

VDA 5050 Version 2.0.0, January 2022  40 

 

Copyright 2022 

 

Object structure Unit Data type Description 

released 
 
} 

 
boolean “true” indicates that the node is part 

of the base. 
“false” indicates that the node is part 
of the horizon. 

edgeState { 
 

JSON-object 
 

edgeId 
 

string Unique edge identification. 

sequenceId 
 

uint32 sequenceId to differentiate between 
multiple edges with the same edgeId. 

edgeDescription 
 

string Additional information on the edge. 

released 
 

boolean “true” indicates that the edge is part 
of the base. 
“false” indicates that the edge is part 
of the horizon. 

trajectory  
 
} 

 
JSON-object The trajectory is to be communicated 

as a NURBS and is defined in 
chapter 6.4 
 
Trajectory segments are defined from 
the point, where the AGV starts to 
enter the edge, to the point, where it 
reports, that the next node was 
traversed. 

agvPosition { 
 

JSON-object Defines the position on a map in 
world coordinates. Each floor has its 
own map. 

positionInitialized 
 

boolean “true”: position is initialized. 
“false”: position is not initialized. 

localizationScore 
 

float64 Range: [0.0 ... 1.0] 
 
Describes the quality of the 
localization and therefore, can be 
used, e.g. by SLAM-AGV to describe, 
how accurate the current position 
information is. 
 
0.0: position unknown 
1.0: position known 
 
Optional for vehicles, that cannot 
estimate their localization score. 
 
Only for logging and visualization 
purposes. 

deviationRange m float64 Value for the deviation range of the 
position in meters. 
 
Optional for vehicles that cannot 
estimate their deviation e.g. grid-
based localization. 
 
Only for logging and visualization 
purposes. 



 

VDA 5050 Version 2.0.0, January 2022  41 

 

Copyright 2022 

 

Object structure Unit Data type Description 

x m float64 X-position on the map in reference to 
the map coordinate system.  
Precision is up to the specific 
implementation. 

y m float64 Y-position on the map in reference to 
the map coordinate system.  
Precision is up to the specific 
implementation. 

theta 
 

float64 Range: [-Pi ... Pi] 
 
Orientation of the AGV. 

mapId 
 

string Unique identification of the map in 
which the position is referenced. 
 
Each map has the same origin of 
coordinates.  
When an AGV uses an elevator, e.g., 
leading from a departure floor to a 
target floor, it will disappear off the 
map of the departure floor and spawn 
in the related lift node on the map of 
the target floor. 

mapDescription 
} 

 
string Additional information on the map. 

velocity { 
 

JSON-object 
 

vx m/s float64 The AVGs velocity in its x direction. 

vy m/s float64 The AVGs velocity in its y direction. 

omega 
} 

Rad/s float64 The AVGs turning speed around its z 
axis. 

load { 
 

JSON-object 
 

loadId 
 

string Unique identification number of the 
load (e.g., barcode or RFID). 
 
Empty field, if the AGV can identify 
the load, but didn’t identify the load 
yet. 
 
Optional, if the AGV cannot identify 
the load. 

loadType 
 

string Type of load. 

loadPosition 
 

string Indicates, which load 
handling/carrying unit of the AGV is 
used, e.g., in case the AGV has 
multiple spots/positions to carry 
loads. 
 
For example: “front”, “back”, 
“positionC1”, etc. 
 
Optional for vehicles with only one 
loadPosition 



 

VDA 5050 Version 2.0.0, January 2022  42 

 

Copyright 2022 

 

Object structure Unit Data type Description 

boundingBoxReference 
 

JSON-object Point of reference for the location of 
the bounding box.  
The point of reference is always the 
center of the bounding box’s bottom 
surface (at height = 0) and is 
described in coordinates of the 
AGV’s coordinate system. 

loadDimensions 
 

JSON-object Dimensions of the load´s bounding 
box in meters. 

weight 
 
} 

kg float64 Range: [0.0 ... infinity) 
 
Absolute weight of the load 
measured in kg. 

boundingBoxReference { 
 

JSON-object Point of reference for the location of 
the bounding box.  
The point of reference is always the 
center of the bounding box’s bottom 
surface (at height = 0) and is 
described in coordinates of the 
AGV’s coordinate system. 

x 
 

float64 x-coordinate of the point of reference. 

y 
 

float64 y-coordinate of the point of reference. 

z 
 

float 64 z-coordinate of the point of reference. 

theta 
} 

 
float64 Orientation of the loads bounding 

box.  
Important for tugger, trains, etc. 

loadDimensions { 
 

JSON-object Dimensions of the load´s bounding 
box in meters. 

length m float64 Absolute length of the load´s 
bounding box. 

width m float64 Absolute width of the load´s 
bounding box. 

height  
 
 
 
} 

m float64 Absolute height of the load´s 
bounding box. 
 
Optional: 
 
Set value only if known. 

actionState { 
 

JSON-object 
 

actionId 
 

string action_ID 

actionType 
 

string actionType of the action. 
 
Optional: Only for informational or 
visualization purposes. Order knows 
the type. 

actionDescription 
 

string Additional information on the current 
action. 



 

VDA 5050 Version 2.0.0, January 2022  43 

 

Copyright 2022 

 

Object structure Unit Data type Description 

actionStatus 
 

string Enum {WAITING; INITIALIZING; 
RUNNING; PAUSED; FINISHED; 
FAILED} 
 
WAITING: waiting for the trigger 
(passing the mode, entering the 
edge) 
PAUSED: paused by instantAction or 
external trigger 
FAILED: action could not be 
performed. 

resultDescription 
 
 
 
} 

 
string Description of the result, e.g., the 

result of a RFID-read. 
 
Errors will be transmitted in errors. 
 
Examples for results are given in 6.5 

batteryState { 
 

JSON-object 
 

batteryCharge % float64 State of Charge:  
if AGV only provides values for good 
or bad battery levels, these will be 
indicated as 20% (bad) and 80% 
(good). 

batteryVoltage V float64 Battery Voltage. 

batteryHealth % int8 Range: [0 .. 100] 
 
State of Health. 

charging 
 

boolean “true”: charging in progress. 
“false”: AGV is currently not charging. 

reach  
 
} 

m uint32 Range: [0 ... infinity) 
 
Estimated reach with current State of 
Charge. 

error { 
 

JSON-object 
 

errorType 
 

string Type/name of error 

errorReferences 
[errorReference] 

 
array Array of references to identify the 

source of the error (e.g., headerId, 
orderId, actionId, etc.). 
For additional information see „Best 
practices“ chapter 7. 

errorDescription 
 

string Error description. 

errorLevel  
 
} 

 
string Enum {WARNING, FATAL} 

 
WARNING: AGV is ready to start 
(e.g. maintenance cycle expiration 
warning). 
FATAL: AGV is not in running 
condition, user intervention required 
(e.g. laser scanner is contaminated). 

errorReference { 
 

JSON-object 
 



 

VDA 5050 Version 2.0.0, January 2022  44 

 

Copyright 2022 

 

Object structure Unit Data type Description 

referenceKey 
 

string References the type of reference 
(e.g., headerId, orderId, actionId, 
etc.). 

referenceValue  
} 

 
string References the value, which belongs 

to the reference key. 

info { 
 

JSON-object 
 

infoType 
 

string Type/name of information. 

infoReferences 
[infoReference] 

 
array Array of references. 

infoDescription 
 

string Info of description. 

infoLevel  
 
 
} 

 
string Enum {DEBUG,INFO} 

 
DEBUG: used for debugging. 
INFO: used for visualization. 

infoReference { 
 

JSON-object 
 

referenceKey 
 

string References the type of reference 
(e.g., headerId, orderId, actionId, 
etc.). 

referenceValue  
} 

 
string References the value, which belongs 

to the reference key. 

safetyState { 
 

JSON-object 
 

eStop 
 

string Enum 
{AUTOACK,MANUAL,REMOTE, 
NONE} 
 
Acknowledge-Type of eStop: 
AUTOACK: auto-acknowledgeable e-
stop is activated, e.g., by bumper or 
protective field. 
MANUAL: e-stop has to be 
acknowledged manually at the 
vehicle. 
REMOTE: facility e-stop has to be 
acknowledged remotely. 
NONE: no e-stop activated. 

fieldViolation 
 
} 

 
boolean Protective field violation. 

"true": field is violated 
"false": field is not violated. 



 

VDA 5050 Version 2.0.0, January 2022  45 

 

Copyright 2022 

 

Operating Mode Description 

The following description lists the operatingMode of the topic "states". 

Identifier Description 

AUTOMATIC AGV is under full control of the master control.  
AGV drives and executes actions based on orders from the master 
control. 

SEMIAUTOMATIC AGV is under control of the master control. 
AGV drives and executes actions based on orders from the master 
control.  
The driving speed is controlled by the HMI (speed can’t exceed the 
speed of automatic mode). 
The steering is under automatic control (non-safe HMI possible). 

MANUAL Master control is not in control of the AGV.  
Supervisor doesn’t send driving order or actions to the AGV.  
HMI can be used to control the steering and velocity and handling 
device of the AGV.  
Location of the AGV is send to the master control.  
When AGV enters or leaves this mode, it immediately clears all the 
orders (safe HMI required). 

SERVICE Master control is not in control of the AGV.  
Master control doesn’t send driving order or actions to the AGV.  
Authorized personal can reconfigure the AGV. 

TEACHIN Master control is not in control of the AGV.  
Supervisor doesn’t send driving order or actions to the AGV.  
The AGV is being taught, e.g., mapping is done by a master control. 

6.11 actionStates 

When an AGV receives an action (either attached to a node or edge or via an 

instantAction), it must represent this action with an actionState in its 

actionStates array. 

actionStates describe in the field actionStatus at which stage of the actions lifecycle 

the action is. 

Table 1 describes, which value the enum actionStatus can hold. 

actionStatus Description 

WAITING Action was received by AGV but the node where it triggers was not yet 
reached or the edge where it is active was not yet entered. 

INITIALIZING Action was triggered, preparatory measures are initiated. 

RUNNING The action is running. 

PAUSED The action is paused because of a pause instantAction or external trigger 
(pause button on AGV) 

FINISHED The action is finished.  
A result is reported via the resultDescription 

FAILED Action could not be finished for whatever reason. 

Table 1 The acceptable values for the actionStatus field 

A state transition diagram is provided in Figure 14. 



 

VDA 5050 Version 2.0.0, January 2022  46 

 

Copyright 2022 

 

 

Figure 14 All possible status transitions for actionStates 

6.12 Action Blocking Types and Sequence 

The order of multiple actions in a list define the sequence, in which those actions are to be 
executed. The parallel execution of actions is governed by their respective blockingType. 

Actions can have three distinct blocking types, described in Table 2. 

actionStatus Description 

NONE Action can be executed in parallel with other actions and while the vehicle 
is driving. 

SOFT Action can be executed in parallel with other actions. Vehicle must not 
drive. 

HARD Action must not be executed in parallel with other actions. Vehicle must not 
drive. 

Table 2 action blocking types 

If there are multiple actions on the same node with different blocking types, Figure 15 
describes how the AGV should handle these actions. 

https://github.com/VDA5050/VDA5050/blob/development/assets/Figure14.png


 

VDA 5050 Version 2.0.0, January 2022  47 

 

Copyright 2022 

 

 

Figure 15 Handling multiple actions 

https://github.com/VDA5050/VDA5050/blob/development/assets/Figure15.png


 

VDA 5050 Version 2.0.0, January 2022  48 

 

Copyright 2022 

 

6.13 Topic "visualization" 

For a near real-time position update the AGV can broadcast its position and velocity on the 
subtopic visualization. 

The structure of the position message is the same as the position and velocity message in 
the state. For additional information see chapter 6.7 Implementation. The update rate for this 
topic is defined by the integrator. 

6.14 Topic "connection" 

During the connection of an AGV client to the broker, a last will topic and message can be 
set, which is published by the broker upon disconnection of the AGV client from the broker. 
Thus, the master control can detect a disconnection event by subscribing the connection 
topics of all AGV. The disconnection is detected via a heartbeat that is exchanged between 
the broker and the client. The interval is configurable in most brokers and should be set 
around 15 seconds. The Quality of Service level for the connection topic shall be 1 - At 

Least Once. 

The suggested last will topic structure is: 

uagv/v2/manufacturer/SN/connection 

The last will message is defined as a JSON encapsulated message with the following fields: 

Identifier Data 
type 

Description 

headerId uint32 Header ID of the message.  
The headerId is defined per topic and incremented by 1 with 
each sent (but not necessarily received) message. 

timestamp string Timestamp (ISO8601, UTC); YYYY-MM-
DDTHH:mm:ss.ssZ(e.g.“2017-04-15T11:40:03.12Z”). 

version string Version of the protocol [Major].[Minor].[Patch] (e.g. 1.3.2). 

manufacturer string Manufacturer of the AGV. 

serialNumber string Serial number of the AGV. 

connectionState string Enum {ONLINE, OFFLINE, CONNECTIONBROKEN} 

 
ONLINE: connection between AGV and broker is active. 

 
OFFLINE: connection between AGV and broker has gone 

offline in a coordinated way.  
 
CONNECTIONBROKEN: The connection between AGV and 

broker has unexpectedly ended. 

The last will message will not be sent, when a connection is ended in a graceful way by using 
a MQTT disconnection command. The last will message is only sent by the broker, if the 
connection is unexpectedly interrupted. 

Note: Due to the nature of the last will feature in MQTT, the last will message is defined 
during the connection phase between the AGV and the MQTT Broker. As a result, the 
timestamp and headerId fields will always be outdated. 



 

VDA 5050 Version 2.0.0, January 2022  49 

 

Copyright 2022 

 

AGV wants to disconnect gracefully: 

1. AGV sends „uagv/v2/manufacturer/SN/connection“ with connectionState set to 

OFFLINE. 

2. Disconnect the mqtt connection with a disconnect command. 

AGV comes online: 

1. Set the last will to „uagv/v2/manufacturer/SN/connection“ with the field 
connectionState set to CONNECTIONBROKEN, when the mqtt connection is 

created. 
2. Send the topic „uagv/v2/manufacturer/SN/connection“ with connectionState set 

to ONLINE. 

All messages on this topic shall be sent with a retained flag. 

When connection between the AGV and the broker stops unexpectedly, the broker will send 
the last will topic: „uagv/v2/manufacturer/SN/connection“ with the field connectionState 

set to CONNECTIONBROKEN. 

6.15 Topic "factsheet" 

The factsheet provides basic information about a specific AGV type series. This information 
allows comparison of different AGV types and can be applied for the planning, dimensioning 
and simulation of an AGV system. The factsheet also includes information about AGV 
communication interfaces which are required for the integration of an AGV type series into a 
VDA-5050-compliant master control. 

The values for some fields in the AGV factsheet can only be specified during system 
integration, for example the assignment of project-specific load and station types, together 
with the list of station and load types which are supported by this AGV. 

The factsheet is both intended as a human-readable document and for machine processing, 
e.g., an import by the master control application, and thus is specified as a JSON document. 

The MC can request the factsheet from the AGV by sending the instant action: 
factsheetRequest 

All messages on this topic shall be sent with a retained flag. 

6.15.1 Factsheet JSON structure 

The factsheet consists of the JSON-objects listed in the following table. 

Field data type description 

headerId uint32 Header ID of the message.  
The headerId is defined per topic and 
incremented by 1 with each sent (but not 
necessarily received) message. 

timestamp string Timestamp (ISO8601, UTC); YYYY-MM-
DDTHH:mm:ss.ssZ(e.g.“2017-04-
15T11:40:03.12Z”). 

version string Version of the protocol [Major].[Minor].[Patch] 
(e.g. 1.3.2). 

manufacturer string Manufacturer of the AGV. 

serialNumber string Serial number of the AGV. 

typeSpecification JSON-object These parameters generally specify the class 
and the capabilities of the AGV. 



 

VDA 5050 Version 2.0.0, January 2022  50 

 

Copyright 2022 

 

Field data type description 

physicalParameters JSON-object These parameters specify the basic physical 
properties of the AGV. 

protocolLimits JSON-object Limits for length of identifiers, arrays, strings and 
similar in MQTT communication. 

protocolFeatures JSON-object Supported features of VDA5050 protocol. 

agvGeometry JSON-object Detailed definition of AGV geometry. 

loadSpecification JSON-object Abstract specification of load capabilities. 

localizationParameters JSON-object Detailed specification of localization. 

typeSpecification 

This JSON object describes general properties of the AGV type. 

Field data type description 

seriesName string Free text generalized series name as specified 
by manufacturer. 

seriesDescription string Free text human readable description of the AGV 
type series. 

agvKinematic string Simplified description of AGV kinematics-type. 
[DIFF, OMNI, THREEWHEEL] 
DIFF: differential drive 
OMNI: omni-directional vehicle 
THREEWHEEL: three-wheel-driven vehicle or 
vehicle with similar kinematics 

agvClass string Simplified description of AGV class. 
[FORKLIFT, CONVEYOR, TUGGER, CARRIER] 
FORKLIFT: forklift. 
CONVEYOR: AGV with conveyors on it. 
TUGGER: tugger. 
CARRIER: load carrier with or without lifting unit. 

maxLoadMass float64 [kg], Maximum loadable mass. 

localizationTypes Array of 
String 

Simplified description of localization type. 
Example values: 
NATURAL: natural landmarks; 
REFLECTOR: laser reflectors; 
RFID: RFID-tags; 
DMC: data matrix code; 
SPOT: magnetic spots; 
GRID: magnetic grid. 

navigationTypes Array of 
String 

List of path planning types supported by the 
AGV, sorted by priority. 
Example values: 
PHYSICAL_LINE_GUIDED: No path planning, 
AGV follows physical installed paths. 
VIRTUAL_LINE_GUIDED: AGV goes fixed 
(virtual) paths. 
AUTONOMOUS: AGV plans its path 
autonomously. 



 

VDA 5050 Version 2.0.0, January 2022  51 

 

Copyright 2022 

 

physicalParameters 

This JSON-object describes physical properties of the AGV. 

Field data type description 

speedMin float64 [m/s] Minimal controlled continuous speed of the 
AGV. 

speedMax float64 [m/s] Maximum speed of the AGV. 

accelerationMax float64 [m/s²] Maximum acceleration with maximum 
load. 

decelerationMax float64 [m/s²] Maximum deceleration with maximum 
load. 

heightMin float64 [m] Minimum height of AGV. 

heightMax float64 [m] Maximum height of AGV. 

width float64 [m] Width of AGV. 

length float64 [m] Length of AGV. 

protocolLimits 

This JSON-object describes the protocol limitations of the AGV. If a parameter is not defined 
or set to zero then there is no explicit limit for this parameter. 

Field data type description 

maxStringLens { JSON-object Maximum lengths of strings. 

 msgLen uint32 Maximum MQTT message length 

 topicSerialLen uint32 Maximum length of serial-number part in 
MQTT-topics. 
 
Affected parameters: 
order.serialNumber 
instantActions.serialNumber 
state.SerialNumber 
visualization.serialNumber 
connection.serialNumber 

 topicElemLen uint32 Maximum length of all other parts in MQTT-
topics. 
 
Affected parameters: 
order.timestamp 
order.version 
order.manufacturer 
instantActions.timestamp 
instantActions.version 
instantActions.manufacturer 
state.timestamp 
state.version 
state.manufacturer 
visualization.timestamp 
visualization.version 
visualization.manufacturer 
connection.timestamp 
connection.version 
connection.manufacturer 



 

VDA 5050 Version 2.0.0, January 2022  52 

 

Copyright 2022 

 

Field data type description 

 idLen uint32 Maximum length of ID-Strings. 
 
Affected parameters: 
order.orderId 
order.zoneSetId 
node.nodeId 
nodePosition.mapId 
action.actionId 
edge.edgeId 
edge.startNodeId 
edge.endNodeId 

 idNumericalOnly boolean If "true" ID-strings need to contain numerical 
values only. 

 enumLen uint32 Maximum length of ENUM- and Key-Strings. 
 
Affected parameters: 
action.actionType action.blockingType 
edge.direction 
actionParameter.key 
state.operatingMode 
load.loadPosition 
load.loadType 
actionState.actionStatus 
error.errorType 
error.errorLevel 
errorReference.referenceKey 
info.infoType 
info.infoLevel 
safetyState.eStop 
connection.connectionState 

 loadIdLen uint32 Maximum length of loadId Strings 

} 
  

maxArrayLens { JSON-object Maximum lengths of arrays. 

 order.nodes uint32 Maximum number of nodes per order 
processable by the AGV. 

 order.edges uint32 Maximum number of edges per order 
processable by the AGV. 

 node.actions uint32 Maximum number of actions per node 
processable by the AGV. 

 edge.actions uint32 Maximum number of actions per edge 
processable by the AGV. 

 
actions.actionsParameters 

uint32 Maximum number of parameters per action 
processable by the AGV. 

 instantActions uint32 Maximum number of instant actions per 
message processable by the AGV. 

 trajectory.knotVector uint32 Maximum number of knots per trajectory 
processable by the AGV. 

 trajectory.controlPoints uint32 Maximum number of control points per 
trajectory processable by the AGV. 



 

VDA 5050 Version 2.0.0, January 2022  53 

 

Copyright 2022 

 

Field data type description 

 state.nodeStates uint32 Maximum number of nodeStates sent by the 
AGV, maximum number of nodes in base of 
AGV. 

 state.edgeStates uint32 Maximum number of edgeStates sent by the 
AGV, maximum number of edges in base of 
AGV. 

 state.loads uint32 Maximum number of load-objects sent by 
the AGV. 

 state.actionStates uint32 Maximum number of actionStates sent by 
the AGV. 

 state.errors uint32 Maximum number of errors sent by the AGV 
in one state-message. 

 state.information uint32 Maximum number of informations sent by 
the AGV in one state-message. 

 error.errorReferences uint32 Maximum number of error references sent 
by the AGV for each error. 

 
information.infoReferences 

uint32 Maximum number of info references sent by 
the AGV for each information. 

} 
  

timing { JSON-object Timing information. 

 minOrderInterval float32 [s], Minimum interval sending order 
messages to the AGV. 

 minStateInterval float32 [s], Minimum interval for sending state-
messages. 

 defaultStateInterval float32 [s], Default interval for sending state-
messages, if not defined, the default value 
from the main document is used. 

 visualizationInterval float32 [s], Default interval for sending messages 
on visualization topic. 

} 
  

agvProtocolFeatures 

This JSON object defines actions and parameters which are supported by the AGV. 

Field data type description 

optionalParameters 
[optionalParameter] 

Array of 
JSON-object 

List of supported and/or required optional 
parameters. 
Optional parameters, that are not listed 
here, are assumed to be not supported by 
the AGV. 

{ 
  

 parameter string Full name of optional parameter, e.g. 
“order.nodes.nodePosition. 
allowedDeviationTheta”. 



 

VDA 5050 Version 2.0.0, January 2022  54 

 

Copyright 2022 

 

Field data type description 

 support enum Type of support for the optional parameter, 
the following values are possible: 
SUPPORTED: optional parameter is 
supported like specified. 
REQUIRED: optional parameter is required 
for proper AGV-operation. 

 description string Free-form text: description of optional 
parameter, e.g.: 

Reason, why the optional parameter 
‘direction’ is necessary for this AGV-type 
and which values it can contain. 

The parameter ‘nodeMarker’ must contain 
unsigned interger-numbers only. 

NURBS-Support is limited to straight lines 
and circle segments. 

} 
  

agvActions [agvAction] Array of 
JSON-object 

List of all actions with parameters supported 
by this AGV. This includes standard actions 
specified in VDA5050 and manufacturer-
specific actions. 

{ 
  

 actionType string Unique actionType corresponding to 
action.actionType. 

 actionDescription string Free-form text: description of the action. 

 actionScopes array of 
enum 

List of allowed scopes for using this action-
type. 
 
INSTANT: usable as instantAction. 
NODE: usable on nodes. 
EDGE: usable on edges. 
 
For example: [„INSTANT“, „NODE“] 

 actionParameters 
[actionParameter] 

Array of 
JSON-object 

List of parameters 
If not defined, the action has no parameters 

 { 
  

  key string Key-String for Parameter. 

  valueDataType enum Data type of Value, possible data types are: 
BOOL, NUMBER, INTEGER, FLOAT, 
STRING, OBJECT, ARRAY. 

  description string Free-form text: description of the parameter. 

  isOptional boolean "true": optional parameter. 

 } 
  

resultDescription string Free-form text: description of the 
resultDescription. 

} 
  



 

VDA 5050 Version 2.0.0, January 2022  55 

 

Copyright 2022 

 

agvGeometry 

This JSON object defines the geometry properties of the AGV, e.g., outlines and wheel 
positions. 

Field data type description 

wheelDefinitions 
[wheelDefinition] 

Array of 
JSON-object 

List of wheels, containing wheel-
arrangement and geometry. 

{ 
  

 type enum Wheel type 
DRIVE, CASTER, FIXED, MECANUM. 

 isActiveDriven boolean "true": wheel is actively driven (de: 
angetrieben). 

 isActiveSteered boolean "true": wheel is actively steered (de: aktiv 
gelenkt). 

 position { JSON-object 
 

   x float64 [m], x-position in AGV-coordinate. system 

   y float64 [m], y-position in AGV-coordinate. system 

   theta float64 [rad], orientation of wheel in AGV-coordinate 
system Necessary for fixed wheels. 

 } 
  

 diameter float64 [m], nominal diameter of wheel. 

 width float64 [m], nominal width of wheel. 

 centerDisplacement float64 [m], nominal displacement of the wheel’s 
center to the rotation point (necessary for 
caster wheels). 
If the parameter is not defined, it is assumed 
to be 0. 

 constraints string Free-form text: can be used by the 
manufacturer to define constraints. 

} 
  

envelopes2d [envelope2d] Array of 
JSON-object 

List of AGV-envelope curves in 2D (german: 
„Hüllkurven“), e.g., the mechanical 
envelopes for unloaded and loaded state, 
the safety fields for different speed cases. 

{ 
  

 set string Name of the envelope curve set. 

 polygonPoints 
[polygonPoint] 

Array of 
JSON-object 

Envelope curve as a x/y-polygon polygon is 
assumed as closed and must be non-self-
intersecting. 

 { 
  

   x float64 [m], x-position of polygon-point. 

   y float64 [m], y-position of polygon-point. 

 } 
  

 description string Free-form text: description of envelope 
curve set. 

} 
  



 

VDA 5050 Version 2.0.0, January 2022  56 

 

Copyright 2022 

 

Field data type description 

envelopes3d [envelope3d] Array of 
JSON-object 

List of AGV-envelope curves in 3D (german: 
„Hüllkurven“). 

{ 
  

 set string Name of the envelope curve set. 

 format string Format of data, e.g., DXF. 

 data JSON-object 3D-envelope curve data, format specified in 
'format'. 

 url string Protocol and url-definition for downloading 
the 3D-envelope curve data, e.g. 
ftp://xxx.yyy.com/ac4dgvhoif5tghji. 

 description string Free-form text: description of envelope 
curve set 

} 
  

loadSpecification 

This JSON object specifies load handling and supported load types of the AGV. 

Field data type description 

loadPositions Array of 
String 

List of load positions / load handling 
devices. 
This lists contains the valid values for the 
parameter “state.loads[].loadPosition” and 
for the action parameter “lhd” of the actions 
pick and drop. 
If this list doesn’t exist or is empty, the AGV 
has no load handling device. 

loadSets [loadSet] Array of 
JSON-object 

list of load-sets that can be handled by the 
AGV 

{ 
  

  setName string Unique name of the load set, e.g., 
DEFAULT, SET1, etc. 

  loadType string Type of load, e.g., EPAL, XLT1200, etc. 

  loadPositions Array of 
String 

List of load positions btw. load handling 
devices, this load-set is valid for. 
If this parameter does not exist or is empty, 
this load-set is valid for all load handling 
devices on this AGV. 

  boundingBoxReference JSON-object Bounding box reference as defined in 
parameter loads[] in state-message. 

  loadDimensions JSON-object Load dimensions as defined in parameter 
loads[] in state-message. 

  maxWeight float64 [kg], maximum weight of loadtype. 

  minLoadhandlingHeight float64 [m], minimum allowed height for handling of 
this load-type and –weight 
references to boundingBoxReference. 



 

VDA 5050 Version 2.0.0, January 2022  57 

 

Copyright 2022 

 

Field data type description 

  maxLoadhandlingHeight float64 [m], maximum allowed height for handling of 
this load-type and –weight 
references to boundingBoxReference. 

  minLoadhandlingDepth float64 [m], minimum allowed depth for this load-
type and –weight 
references to boundingBoxReference. 

  maxLoadhandlingDepth float64 [m], maximum allowed depth for this load-
type and –weight 
references to boundingBoxReference. 

  minLoadhandlingTilt float64 [rad], minimum allowed tilt for this load-type 
and –weight. 

  maxLoadhandlingTilt float64 [rad], maximum allowed tilt for this load-type 
and –weight. 

  agvSpeedLimit float64 [m/s], maximum allowed speed for this load-
type and –weight. 

  agvAccelerationLimit float64 [m/s²], maximum allowed acceleration for 
this load-type and –weight. 

  agvDecelerationLimit float64 [m/s²], maximum allowed deceleration for 
this load-type and –weight. 

  pickTime float64 [s], approx. time for picking up the load 

  dropTime float64 [s], approx. time for dropping the load. 

  description string Free-form text: description of the load 
handling set. 

} 
  



 

VDA 5050 Version 2.0.0, January 2022  58 

 

Copyright 2022 

 

7 Best practice 

This section includes additional information, which helps in facilitating a common 
understanding concurrent with the logic of the protocol. 

7.1 Error reference 

If an error occurs due to an erroneous order, the AGV should return a meaningful error 
reference in the fields errorReference (see 6.10.6). This can include the following information: 

• headerId 

• Topic (order or instantAction) 

• orderId and orderUpdateId if error was caused by an order update. 

• actionId if error was caused by an action. 

• List of parameters if error was caused by erroneous action parameters 

If an action cannot be completed because of external factors (e.g. no load at expected 
position), the actionId should be referenced. 

7.2 Format of parameters 

Parameters for errors, information, actions are designed as an array of JSON-Objects with 
key-value-pairs. Sample for the actionParameter of an action “someAction” with key-value-
pairs for stationType and loadType: 

"actionParameters":[ 

{"key":"stationType", "value": "floor"}, 

{"key": "loadType", "value": "pallet_eu"} 

 ] 

The reason for using the proposed scheme of “key”: “actualKey”, “value”: “actualValue” is to 
keep the implementation generic. This was thoroughly and controversially discussed in 
multiple meetings. 



 

VDA 5050 Version 2.0.0, January 2022  59 

 

Copyright 2022 

 

8 Glossary 

Concept Description 

Free navigation 
AGV 

Vehicles that use a map to plan their own path.  
The master control sends only start and destination coordinates. 
The vehicle sends its path to the master control. 
When the communication to the master control is broken off, the 
vehicle is able to continue its journey. 
Free-navigation vehicles may be allowed to bypass local obstacles. 
It may also be possible that a fine adjustment of the 
receiving/dispensing position by the vehicle itself is carried out. 

Guided vehicles 
(physical or virtual) 

Vehicles that get their path sent by the master control.  
The calculation of the path takes place in the master control. 
When communication to the master control is broken off, the vehicle 
terminates its released nodes and edges (the "base") and then 
stops. 
Guided vehicles may be allowed to bypass local obstacles. 
It may also be possible that a fine adjustment of the 
receiving/dispensing position by the vehicle itself is carried out. 

Central map The maps that will be held centrally in the master control. 
This is initially created and then used. 
A future version of the interface will make it possible to transfer this 
map to the vehicles (e.g., for free navigation). 

 



 

VDA 5050 Version 2.0.0, January 2022  60 

 

 

 @VDA_online 
 Verband der Automobilindustrie 

 

If you notice any errors, omissions or ambiguities in these recommendations, please contact 

VDA without delay so that these errors can be rectified. 

 

Publisher German Association of the Automotive Industry 

Behrenstraße 35, 10117 Berlin 

www.vda.de/en 

 

Copyright German Association of the Automotive Industry 

 

 Reprint, also in extracts, is only permitted, 

if the source is stated. 

 

Version Version X.X, Month Year 

http://www.vda.de/en

